Crystal structure of a nonsymbiotic plant hemoglobin.

نویسندگان

  • M S Hargrove
  • E A Brucker
  • B Stec
  • G Sarath
  • R Arredondo-Peter
  • R V Klucas
  • J S Olson
  • G N Phillips
چکیده

BACKGROUND Nonsymbiotic hemoglobins (nsHbs) form a new class of plant proteins that is distinct genetically and structurally from leghemoglobins. They are found ubiquitously in plants and are expressed in low concentrations in a variety of tissues including roots and leaves. Their function involves a biochemical response to growth under limited O(2) conditions. RESULTS The first X-ray crystal structure of a member of this class of proteins, riceHb1, has been determined to 2.4 A resolution using a combination of phasing techniques. The active site of ferric riceHb1 differs significantly from those of traditional hemoglobins and myoglobins. The proximal and distal histidine sidechains coordinate directly to the heme iron, forming a hemichrome with spectral properties similar to those of cytochrome b(5). The crystal structure also shows that riceHb1 is a dimer with a novel interface formed by close contacts between the G helix and the region between the B and C helices of the partner subunit. CONCLUSIONS The bis-histidyl heme coordination found in riceHb1 is unusual for a protein that binds O(2) reversibly. However, the distal His73 is rapidly displaced by ferrous ligands, and the overall O(2) affinity is ultra-high (K(D) approximately 1 nM). Our crystallographic model suggests that ligand binding occurs by an upward and outward movement of the E helix, concomitant dissociation of the distal histidine, possible repacking of the CD corner and folding of the D helix. Although the functional relevance of quaternary structure in nsHbs is unclear, the role of two conserved residues in stabilizing the dimer interface has been identified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary trace analysis of plant haemoglobins: implications for site-directed mutagenesis

Haemoglobins are found ubiquitously in eukaryotes and many bacteria. In plants, haemoglobins were first identified in species, which can fix nitrogen via symbiosis with bacteria. Recent findings suggest that another class of haemoglobins termed as nonsymbiotic haemoglobins are present through out the plant kingdom and are expressed differentially during plant development. Limited data available...

متن کامل

The structure of a class 3 nonsymbiotic plant haemoglobin from Arabidopsis thaliana reveals a novel N-terminal helical extension.

Plant nonsymbiotic haemoglobins fall into three classes, each with distinct properties but all with largely unresolved physiological functions. Here, the first crystal structure of a class 3 nonsymbiotic plant haemoglobin, that from Arabidopsis thaliana, is reported to 1.77 Å resolution. The protein forms a homodimer, with each monomer containing a two-over-two α-helical domain similar to that ...

متن کامل

Nitric Oxide in Plants: The Roles of Ascorbate and Hemoglobin

Ascorbic acid and hemoglobins have been linked to nitric oxide metabolism in plants. It has been hypothesized that ascorbic acid directly reduces plant hemoglobin in support of NO scavenging, producing nitrate and monodehydroascorbate. In this scenario, monodehydroascorbate reductase uses NADH to reduce monodehydroascorbate back to ascorbate to sustain the cycle. To test this hypothesis, rates ...

متن کامل

Two hemoglobin genes in Arabidopsis thaliana: the evolutionary origins of leghemoglobins.

We cloned two hemoglobin genes from Arabidopsis thaliana. One gene, AHB1, is related in sequence to the family of nonsymbiotic hemoglobin genes previously identified in a number of plant species (class 1). The second hemoglobin gene, AHB2, represents a class of nonsymbiotic hemoglobin (class 2) related in sequence to the symbiotic hemoglobin genes of legumes and Casuarina. The properties of the...

متن کامل

Molecular cloning and characterization of a moss (Ceratodon purpureus) nonsymbiotic hemoglobin provides insight into the early evolution of plant nonsymbiotic hemoglobins.

Nonsymbiotic hemoglobins (nsHbs) are widespread in plants including bryophytes. Bryophytes (such as mosses) are among the oldest land plants, thus an analysis of a bryophyte nsHb is of interest from an evolutionary perspective. However, very little is known about bryophyte nsHbs. Here, we report the cloning and characterization of an nshb gene (cerhb) from the moss Ceratodon purpureus. Sequence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Structure

دوره 8 9  شماره 

صفحات  -

تاریخ انتشار 2000